Simple Bayesian Analysis — Technical Guide (SVG Equations)

All mathematical expressions below are rendered as SVG images for perfect rendering in WordPress without plugins.

The Core Idea

Bayesian analysis updates a prior belief using new evidence to produce a posterior belief. The engine is Bayes’ theorem:

Bayes Theorem

  • H: hypothesis or parameter
  • D: observed data
  • P(H): prior probability
  • P(D\mid H): likelihood
  • P(D): evidence (normalizer)
  • P(H\mid D): posterior probability

One-Shot Example: Diagnostic Test

Setup. Disease prevalence 1%; sensitivity 99%; specificity 95% (false-positive rate 5%).

  • P(H) = 0.01
  • P(Positive | H) = 0.99
  • P(Positive | ¬H) = 0.05

Evidence (law of total probability):

Evidence

Evidence numeric

Posterior (positive predictive value):

Posterior numeric

Even with a high-accuracy test, the posterior is ~16.6% because the disease is rare (the prior dominates).

Conjugate Priors (Closed-Form Updates)

Beta–Binomial (probabilities)

For a Bernoulli/Binomial likelihood with success probability θ and prior Beta(α, β), after observing s successes and f failures:

Beta posterior

Beta moments

Gamma–Poisson (rates)

For counts Y ~ Poisson(λ) with prior λ ~ Gamma(k, θ) (shape–rate), given total count Σy over n exposure units:

Gamma posterior

Worked Beta–Binomial Update (Landing-Page Conversion)

Prior. Mean ≈ 5% with moderate spread → choose Beta(2, 38) (mean 2/40).

Data. s = 18 conversions in n = 300 visitors (f = 282).

Posterior example

Posterior mean example

The posterior mean shifts from 5.0% to ≈5.9%, reflecting modest evidence for a better rate while honoring prior knowledge.

When to Use Simple Bayesian Analysis

  • Low-data regimes (startups, rare events)
  • Sequential decisions with continual updates
  • Risk-sensitive contexts that need uncertainty quantification
  • A/B tests with principled early stopping via posterior probabilities

Common Pitfalls (and Mitigations)

  • Priors too strong or uninformed → run prior sensitivity analyses.
  • Mis-specified likelihood → validate assumptions; consider robust models.
  • Over-reliance on MAP → report full posterior summaries and credible intervals.
  • No model checking → use posterior predictive checks.

Implementation Notes

  • Use conjugate families (Beta–Binomial, Gamma–Poisson) for fast closed-form updates.
  • For non-conjugate or hierarchical models, sample the posterior (e.g., PyMC/Stan) and compute credible intervals.
  • Report posterior mean/median and a 95% credible interval; include posterior predictive diagnostics.

Further Reading

Summary Table

Concept Technical Summary (SVG where relevant)
Bayes’ Theorem Proportional form
Evidence Evidence sum
Beta–Binomial Posterior Beta posterior
Gamma–Poisson Posterior Gamma posterior
Posterior Mean (Beta) Posterior mean beta
MAP (Beta) MAP beta
Diagnostic PPV PPV numeric

Edvaldo Guimrães Filho Avatar

Published by